Affiliation:
1. Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700
Abstract
ABSTRACT
Haloferax volcanii
, a halophilic archaeon, synthesizes three different proteins (α1, α2, and β) which are classified in the 20S proteasome superfamily. The α1 and β proteins alone form active 20S proteasomes; the role of α2, however, is not clear. To address this, α2 was synthesized with an epitope tag and purified by affinity chromatography from recombinant
H. volcanii
. The α2 protein copurified with α1 and β in a complex with an overall structure and peptide-hydrolyzing activity comparable to those of the previously described α1-β proteasome. Supplementing buffers with 10 mM CaCl
2
stabilized the halophilic proteasomes in the absence of salt and enabled them to be separated by native gel electrophoresis. This facilitated the discovery that wild-type
H. volcanii
synthesizes more than one type of 20S proteasome. Two 20S proteasomes, the α1-β and α1-α2-β proteasomes, were identified during stationary phase. Cross-linking of these enzymes, coupled with available structural information, suggested that the α1-β proteasome was a symmetrical cylinder with α1 rings on each end. In contrast, the α1-α2-β proteasome appeared to be asymmetrical with homo-oligomeric α1 and α2 rings positioned on separate ends. Inter-α-subunit contacts were only detected when the ratio of α1 to α2 was perturbed in the cell using recombinant technology. These results support a model that the ratio of α proteins may modulate the composition and subunit topology of 20S proteasomes in the cell.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献