In Situ Activation of the Quorum-Sensing Transcription Factor TraR by Cognate and Noncognate Acyl-Homoserine Lactone Ligands: Kinetics and Consequences

Author:

Luo Zhao-Qing1,Su Shengchang1,Farrand Stephen K.12

Affiliation:

1. Departments of Crop Sciences

2. Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Abstract

ABSTRACT Conjugal transfer of Ti plasmids of Agrobacterium tumefaciens is controlled by a quorum-sensing system composed of the transcriptional activator TraR and its acyl-homoserine lactone quormone N -(3-oxo-octanoyl)- l -homoserine lactone (3-oxo-C8-HSL). The population density dependence of quorum-sensing systems can often be circumvented by addition of the quormone to cultures at low cell numbers. However, the quorum-dependent activation of Ti plasmid conjugal transfer exhibited a lag of almost 8 h when the quormone was added to donor cells at low population densities (Piper and Farrand, J. Bacteriol. 182:1080-1088, 2000). As measured by activation of a TraR-dependent traG :: lacZ reporter fusion, TraR in cells exposed to the cognate signal for 5 min showed detectable activity, while exposure for 15 min resulted in full activity. Thus, the lag in activation is not due to some intrinsic property of TraR. Cells exposed to the agonistic analog N -(3-oxo-hexanoyl)- l -homoserine lactone (3-oxo-C6-HSL) exhibited similar induction kinetics. However, activation of the reporter in cells exposed to the poorly effective alkanoyl acyl-HSL N -hexanoyl- l -homoserine lactone (C6-HSL) required the continued presence of the signal. As measured by an in vivo repressor assay, TraR activated by 3-oxo-C6-HSL or by 3-oxo-C8-HSL remained active for as long as 8 h after removal of exogenous signal. However, TraR activated by the alkanoyl quormone C6-HSL rapidly lost activity following removal of the signal. In quormone retention assays, which measure signal binding by TraR, cells grown with either of the two 3-oxo-acyl-HSL quormones retained the ligand after washing, while cells grown with C6-HSL lost the alkanoyl-HSL concomitant with the rapid loss of TraR activity. We conclude that TraR rapidly binds its quormone and that, once bound, the cognate signal and its close homologs are tightly retained. Moreover, in the absence of other regulatory factors, activated TraR remains functional after removal of the signal. On the other hand, poorly active signals are not tightly bound, and their removal by washing leads to rapid loss of TraR activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3