The 1.3-Angstrom-Resolution Crystal Structure of β-Ketoacyl-Acyl Carrier Protein Synthase II from Streptococcus pneumoniae

Author:

Price Allen C.1,Rock Charles O.23,White Stephen W.13

Affiliation:

1. Departments of Structural Biology

2. Infectious Diseases, St. Jude Children's Research Hospital

3. Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38105

Abstract

ABSTRACT The β-ketoacyl-acyl carrier protein synthases are members of the thiolase superfamily and are key regulators of bacterial fatty acid synthesis. As essential components of the bacterial lipid metabolic pathway, they are an attractive target for antibacterial drug discovery. We have determined the 1.3 Å resolution crystal structure of the β-ketoacyl-acyl carrier protein synthase II (FabF) from the pathogenic organism Streptococcus pneumoniae . The protein adopts a duplicated βαβαβαββ fold, which is characteristic of the thiolase superfamily. The two-fold pseudosymmetry is broken by the presence of distinct insertions in the two halves of the protein. These insertions have evolved to bind the specific substrates of this particular member of the thiolase superfamily. Docking of the pantetheine moiety of the substrate identifies the loop regions involved in substrate binding and indicates roles for specific, conserved residues in the substrate binding tunnel. The active site triad of this superfamily is present in spFabF as His 303, His 337, and Cys 164. Near the active site is an ion pair, Glu 346 and Lys 332, that is conserved in the condensing enzymes but is unusual in our structure in being stabilized by an Mg 2+ ion which interacts with Glu 346. The active site histidines interact asymmetrically with Lys 332, whose positive charge is closer to His 303, and we propose a specific role for the lysine in polarizing the imidazole ring of this histidine. This asymmetry suggests that the two histidines have unequal roles in catalysis and provides new insights into the catalytic mechanisms of these enzymes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3