Global Stage-Specific Gene Regulation during the Developmental Cycle of Chlamydia trachomatis

Author:

Nicholson Tracy L.1,Olinger Lynn2,Chong Kimberley3,Schoolnik Gary3,Stephens Richard S.12

Affiliation:

1. Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720

2. Francis I. Proctor Foundation, University of California, San Francisco, California 94143

3. Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California 94305

Abstract

ABSTRACT Distinct morphological changes associated with the complex development cycle of the obligate intracellular bacterial pathogen Chlamydia trachomatis have been historically well characterized by microscopy. A number of temporally regulated genes have been characterized previously, suggesting that the chlamydial developmental cycle is regulated at the transcriptional level. This hypothesis was tested by microarray analysis in which the entire C. trachomatis genome was analyzed, providing a comprehensive assessment of global gene regulation throughout the chlamydial developmental cycle. Seven temporally cohesive gene clusters were identified, with 22% (189 genes) of the genome differentially expressed during the developmental cycle. The correlation of these gene clusters with hallmark morphological events of the chlamydial developmental cycle suggests three global stage-specific networks of gene regulation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3