Influence of Temperature on tRNA Modification in Archaea: Methanococcoides burtonii (Optimum Growth Temperature [ T opt ], 23°C) and Stetteria hydrogenophila ( T opt , 95°C)

Author:

Noon Kathleen R.1,Guymon Rebecca1,Crain Pamela F.1,McCloskey James A.12,Thomm Michael3,Lim Julianne4,Cavicchioli Ricardo4

Affiliation:

1. Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112

2. Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132

3. Institut für Allgemeine Mikrobiologie, Christian Albrechts Universität Kiel, 24118 Kiel, Germany

4. School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, Australia

Abstract

ABSTRACT We report the first study of tRNA modification in psychrotolerant archaea, specifically in the archaeon Methanococcoides burtonii grown at 4 and 23°C. For comparison, unfractionated tRNA from the archaeal hyperthermophile Stetteria hydrogenophila cultured at 93°C was examined. Analysis of modified nucleosides using liquid chromatography-electrospray ionization mass spectrometry revealed striking differences in levels and identities of tRNA modifications between the two organisms. Although the modification levels in M. burtonii tRNA are the lowest in any organism of which we are aware, it contains more than one residue per tRNA molecule of dihydrouridine, a molecule associated with maintenance of polynucleotide flexibility at low temperatures. No differences in either identities or levels of modifications, including dihydrouridine, as a function of culture temperature were observed, in contrast to selected tRNA modifications previously reported for archaeal hyperthermophiles. By contrast, S. hydrogenophila tRNA was found to contain a remarkable structural diversity of 31 modified nucleosides, including nine methylated guanosines, with eight different nucleoside species methylated at O-2′ of ribose, known to be an effective stabilizing motif in RNA. These results show that some aspects of tRNA modification in archaea are strongly associated with environmental temperature and support the thesis that posttranscriptional modification is a universal natural mechanism for control of RNA molecular structure that operates across a wide temperature range in archaea as well as bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3