Targeted Gene Disruption by Homologous Recombination in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1

Author:

Sato Takaaki1,Fukui Toshiaki1,Atomi Haruyuki1,Imanaka Tadayuki1

Affiliation:

1. Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

Abstract

ABSTRACT In contrast to the high accumulation in sequence data for hyperthermophilic archaea, methodology for genetically manipulating these strains is still at an early stage. This study aimed to develop a gene disruption system for the hyperthermophilic euryarchaeon Thermococcus kodakaraensis KOD1. Uracil-auxotrophic mutants with mutations in the orotidine-5′-monophosphate decarboxylase gene ( pyrF ) were isolated by positive selection using 5-fluoroorotic acid (5-FOA) and used as hosts for further transformation experiments. We then attempted targeted disruption of the trpE locus in the host strain by homologous recombination, as disruption of trpE was expected to result in tryptophan auxotrophy, an easily detectable phenotype. A disruption vector harboring the pyrF marker within trpE was constructed for double-crossover recombination. The host cells were transformed with the exogenous DNA using the CaCl 2 method, and several transformants could be selected based on genetic complementation. Genotypic and phenotypic analyses of a transformant revealed the unique occurrence of targeted disruption, as well as a phenotypic change of auxotrophy from uracil to tryptophan caused by integration of the wild-type pyrF into the host chromosome at trpE . As with the circular plasmid, gene disruption with linear DNA was also possible when the homologous regions were relatively long. Shortening these regions led to predominant recombination between the pyrF marker in the exogenous DNA and the mutated allele on the host chromosome. In contrast, we could not obtain trpE disruptants by insertional inactivation using a vector designed for single-crossover recombination. The gene targeting system developed in this study provides a long-needed tool in the research on hyperthermophilic archaea and will open the way to a systematic, genetic approach for the elucidation of unknown gene function in these organisms.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3