CWHM-974 is a fluphenazine derivative with improved antifungal activity against Candida albicans due to reduced susceptibility to multidrug transporter-mediated resistance mechanisms

Author:

Miron-Ocampo Aracely1,Beattie Sarah R.2,Guin Soumitra3,Conway Thomas4,Meyers Marvin J.3,Moye-Rowley W. Scott4,Krysan Damian J.124ORCID

Affiliation:

1. Microbiology/Immunology, Carver College of Medicine, University of Iowa , Iowa City, Iowa, USA

2. Department of Pediatrics, Carver College of Medicine, University of Iowa , Iowa City, Iowa, USA

3. Department of Chemistry, Saint Louis University , Saint Louis, Missouri, USA

4. Department of Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa, USA

Abstract

ABSTRACT Multidrug resistance (MDR) transporters such as ATP-Binding Cassette (ABC) and Major Facilitator Superfamily proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against Candida spp. compared to the fluphenazine and with activity against Candida spp. with reduced fluconazole susceptibility due to increased MDR transporters. Here, we show that the improved C. albicans activity is because fluphenazine induces its own resistance by triggering expression of Candida drug resistance (CDR) transporters while CWHM-974 induces expression but does not appear to be a substrate for the transporters or is insensitive to their effects through other mechanisms. We also found that fluphenazine and CWHM-974 are antagonistic with fluconazole in C. albicans but not in C. glabrata , despite inducing CDR1 expression to high levels. Overall, CWHM-974 is one of the few examples of a molecule in which relatively small structural modifications significantly reduced susceptibility to multidrug transporter-mediated resistance.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3