Mechanism of Activation of β- d -2′-Deoxy-2′-Fluoro-2′- C -Methylcytidine and Inhibition of Hepatitis C Virus NS5B RNA Polymerase

Author:

Murakami Eisuke1,Bao Haiying1,Ramesh Mangala1,McBrayer Tamara R.1,Whitaker Tony1,Micolochick Steuer Holly M.1,Schinazi Raymond F.2,Stuyver Lieven J.1,Obikhod Aleksandr1,Otto Michael J.1,Furman Phillip A.1

Affiliation:

1. Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540

2. Emory University VA Medical Center, Medical Research-151, 1670 Clairmont Road, Decatur, Georgia 30033

Abstract

ABSTRACT β- d -2′-Deoxy-2′-fluoro-2′- C -methylcytidine (PSI-6130) is a potent specific inhibitor of hepatitis C virus (HCV) RNA synthesis in Huh-7 replicon cells. To inhibit the HCV NS5B RNA polymerase, PSI-6130 must be phosphorylated to the 5′-triphosphate form. The phosphorylation of PSI-6130 and inhibition of HCV NS5B were investigated. The phosphorylation of PSI-6130 by recombinant human 2′-deoxycytidine kinase (dCK) and uridine-cytidine kinase 1 (UCK-1) was measured by using a coupled spectrophotometric reaction. PSI-6130 was shown to be a substrate for purified dCK, with a K m of 81 μM and a k cat of 0.007 s −1 , but was not a substrate for UCK-1. PSI-6130 monophosphate (PSI-6130-MP) was efficiently phosphorylated to the diphosphate and subsequently to the triphosphate by recombinant human UMP-CMP kinase and nucleoside diphosphate kinase, respectively. The inhibition of wild-type and mutated (S282T) HCV NS5B RNA polymerases was studied. The steady-state inhibition constant ( K i ) for PSI-6130 triphosphate (PSI-6130-TP) with the wild-type enzyme was 4.3 μM. Similar results were obtained with 2′- C -methyladenosine triphosphate ( K i = 1.5 μM) and 2′- C -methylcytidine triphosphate ( K i = 1.6 μM). NS5B with the S282T mutation, which is known to confer resistance to 2′- C -methyladenosine, was inhibited by PSI-6130-TP as efficiently as the wild type. Incorporation of PSI-6130-MP into RNA catalyzed by purified NS5B RNA polymerase resulted in chain termination.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3