Human Organic Cation Transporters 1 (SLC22A1), 2 (SLC22A2), and 3 (SLC22A3) as Disposition Pathways for Fluoroquinolone Antimicrobials

Author:

Mulgaonkar Aditi,Venitz Jürgen,Gründemann Dirk,Sweet Douglas H.

Abstract

ABSTRACTFluoroquinolones (FQs) are important antimicrobials that exhibit activity against a wide range of bacterial pathogens and excellent tissue permeation. They exist as charged molecules in biological fluids, and thus, their disposition depends heavily on active transport and facilitative diffusion. A recent review of the clinical literature indicated that tubular secretion and reabsorption are major determinants of their half-life in plasma, efficacy, and drug-drug interactions. In particular, reportedin vivointeractions between FQs and cationic drugs affecting renal clearance implicated organic cation transporters (OCTs). In this study, 13 FQs, ciprofloxacin, enoxacin, fleroxacin, gatifloxacin, levofloxacin, lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, and sparfloxacin, were screened for their ability to inhibit transport activity of human OCT1 (hOCT1) (SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). All, with the exception of enoxacin, significantly inhibited hOCT1-mediated uptake under initial test conditions. None of the FQs inhibited hOCT2, and only moxifloxacin inhibited hOCT3 (∼30%), even at a 1,000-fold excess. Gatifloxacin, moxifloxacin, prulifloxacin, and sparfloxacin were determined to be competitive inhibitors of hOCT1. Inhibition constants (Ki) were estimated to be 250 ± 18 μM, 161 ± 19 μM, 136 ± 33 μM, and 94 ± 8 μM, respectively. Moxifloxacin competitively inhibited hOCT3-mediated uptake, with aKivalue of 1,598 ± 146 μM. Despite expression in enterocytes (luminal), hepatocytes (sinusoidal), and proximal tubule cells (basolateral), hOCT3 does not appear to contribute significantly to FQ disposition. However, hOCT1 in the sinusoidal membrane of hepatocytes, and potentially the basolateral membrane of proximal tubule cells, is likely to play a role in the disposition of these antimicrobial agents.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference45 articles.

1. Quinolone activity against anaerobes;Appelbaum;Drugs,1999

2. Fluoroquinolones: past, present and future of a novel group of antibacterial agents;Scholar;Am. J. Pharm. Educ,2002

3. Fluoroquinolone toxicity profiles: a review focusing on newer agents;Lipsky;Clin. Infect. Dis,1999

4. New quinolone antibiotics: a survey of the literature from 2005 to 2010;Wiles;Expert Opin. Ther. Pat,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3