Evolutionary Dynamics of ompA , the Gene Encoding the Chlamydia trachomatis Key Antigen

Author:

Nunes Alexandra1,Borrego Maria J.1,Nunes Baltazar2,Florindo Carlos1,Gomes João P.1

Affiliation:

1. Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, Lisbon, Portugal

2. Department of Epidemiology, National Institute of Health, Av. Padre Cruz, Lisbon, Portugal

Abstract

ABSTRACT Chlamydia trachomatis is the trachoma agent and causes most bacterial sexually transmitted infections worldwide. Its major outer membrane protein (MOMP) is a well-known porin and adhesin and is the dominant antigen. So far, investigation of MOMP variability has been focused mainly on molecular epidemiological surveys. In contrast, we aimed to evaluate the impact of the host pressure on this key antigen by analyzing its evolutionary dynamics in 795 isolates from urogenital infections, taking into account the MOMP secondary structure and the sizes/positions of antigenic regions. One-third of the specimens showed a mutational drift from the corresponding genotype, where ∼42% of the mutations had never been described. Amino acid alterations were sixfold more frequent within B-cell epitopes than in the remaining protein ( P = 0.027), and some mutations were also found within or close to T-cell antigenic clusters. Interestingly, the two most ecologically successful genotypes, E and F, showed a mutation rate 60.3-fold lower than that of the other genotypes ( P < 10 −8 ), suggesting that their efficacy may be the result of a better fitness in dealing with the host immune system rather than of specific virulence factors. Furthermore, the variability exhibited by some genetic variants involved residues that are known to play a critical role during the membrane mechanical movements, contributing to a more stable and flexible porin conformation, which suggests some plasticity to deal with environmental pressure. Globally, these MOMP mutational trends yielded no mosaic structures or important phylogenetic changes, but instead yielded point mutations on specific protein domains, which may enhance pathogen's infectivity, persistence, and transmission.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3