Purification and Characterization of Aeromonas caviae ME-1 Xylanase V, Which Produces Exclusively Xylobiose from Xylan

Author:

Kubata Bruno Kilunga1,Suzuki Tohru2,Horitsu Hiroyuki2,Kawai Keiichi2,Takamizawa Kazuhiro2

Affiliation:

1. The United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Gifu 501-11, Japan

2. Department of Biotechnology, Division of Bioresources Utilization, Faculty of Agriculture, Gifu University, Yanagido 1-1, Gifu 501-11, Japan

Abstract

A xylanase, which produces exclusively xylobiose from oat spelt and birch xylans, was isolated from the culture medium of Aeromonas caviae ME-1. The enzyme (xylanase V) was purified by ammonium sulfate fractionation, hydrophobic interaction, and ion-exchange and gel filtration chromatographies. The homogeneity of the final preparation was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel electrofocusing. The molecular mass and isoelectric point of the xylanase were 46 kDa and 5.4, respectively. Xylanase V had a maximum activity at a pH of 6.8 and at a temperature between 30 and 37°C. It was relatively stable at a pH between 5.0 and 8.6 and a temperature between 25 and 37°C. When soluble birch xylan was used as the substrate, the enzyme had a K m and V max of 2 mg/ml and 182 μmol of xylose equivalent liberated · min -1 · mg of protein -1 , respectively. By the action of xylanase V on xylans (from oat spelt and birch), only one product corresponding to xylobiose was observed by thin-layer chromatography. The xylanase V putative product was confirmed to be xylobiose by acid and enzymatic hydrolyses. The xylanase had neither β-xylosidase, α- l -arabinofuranosidase, cellulase, nor β-1,3-xylanase activities. Xylotriose was the shortest substrate which the enzyme could attack. These findings suggest that xylanase V is a novel enzyme that cleaves a xylobiose unit from one of the ends of xylans, probably by an exomechanism.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3