Histo-Blood Group Antigen-Like Substances of Human Enteric Bacteria as Specific Adsorbents for Human Noroviruses

Author:

Miura Takayuki1,Sano Daisuke1,Suenaga Atsushi1,Yoshimura Takeshi1,Fuzawa Miyu1,Nakagomi Toyoko2,Nakagomi Osamu2,Okabe Satoshi1

Affiliation:

1. Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan

2. Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

Abstract

ABSTRACT Histo-blood group antigens (HBGAs) have been suggested to be receptors or coreceptors for human noroviruses (HuNoVs) expressed on the intestinal epithelium. We isolated an enteric bacterium strain (SENG-6), closely related to Enterobacter cloacae , bearing HBGA-like substances from a fecal sample of a healthy individual by using a biopanning technique with anti-HBGA antibodies. The binding capacities of four genotypes of norovirus-like particles (NoVLPs) to Enterobacter sp. SENG-6 cells were confirmed by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy demonstrated that NoVLPs bound mainly to extracellular polymeric substances (EPS) of Enterobacter sp. SENG-6, where the HBGA-like substances were localized. EPS that contained HBGA-like substances extracted from Enterobacter sp. SENG-6 was shown by enzyme-linked immunosorbent assay (ELISA) to be capable of binding to NoVLPs of a GI.1 wild-type strain (8fIIa) and a GII.6 strain that can recognize A antigen but not to an NoVLP GI.1 mutant strain (W375A) that loses the ability to bind to A antigen. Enzymatic cleavage of terminal N -acetyl-galactosamine residues in the bacterial EPS weakened bacterial EPS binding to the GI.1 wild-type strain (8fIIa). These results indicate that A-like substances in the bacterial EPS play a key role in binding to NoVLPs. Since the specific binding of HuNoVs to HBGA-positive enteric bacteria is likely to affect the transmission and infection processes of HuNoVs in their hosts and in the environment, further studies of human enteric bacteria and their binding capacity to HuNoVs will provide a new scientific platform for understanding interactions between two types of microbes that were previously regarded as biologically unrelated.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3