The Novel Two-Component Regulatory System BfiSR Regulates Biofilm Development by Controlling the Small RNA rsmZ through CafA

Author:

Petrova Olga E.1,Sauer Karin1

Affiliation:

1. Department of Biological Sciences, Binghamton University, Binghamton, New York 13902

Abstract

ABSTRACT The formation of biofilms by the opportunistic pathogen Pseudomonas aeruginosa is a developmental process governed by a novel signal transduction system composed of three two-component regulatory systems (TCSs), BfiSR, BfmSR, and MifSR. Here, we show that BfiSR-dependent arrest of biofilm formation coincided with reduced expression of genes involved in virulence, posttranslational/transcriptional modification, and Rhl quorum sensing but increased expression of rhlAB and the small regulatory RNAs rsmYZ . Overexpression of rsmZ , but not rsmY , coincided with impaired biofilm development similar to inactivation of bfiS and retS . We furthermore show that BfiR binds to the 5′ untranslated region of cafA encoding RNase G. Lack of cafA expression coincided with impaired biofilm development and increased rsmYZ levels during biofilm growth compared to the wild type. Overexpression of cafA restored Δ bfiS biofilm formation to wild-type levels and reduced rsmZ abundance. Moreover, inactivation of bfiS resulted in reduced virulence, as revealed by two plant models of infection. This work describes the regulation of a committed biofilm developmental step following attachment by the novel TCS BfiSR through the suppression of sRNA rsmZ via the direct regulation of RNase G in a biofilm-specific manner, thus underscoring the importance of posttranscriptional mechanisms in controlling biofilm development and virulence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3