Affiliation:
1. Department of Pathology and Graduate Program in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
Abstract
Abelson murine leukemia virus transforms pre-B cells in vitro and induces rapid-onset pre-B-cell lymphoma in vivo. Expression of an active v-Abl protein tyrosine kinase is required for the oncogenic functions of the virus. Despite the strong growth-stimulatory signal provided by v-Abl, the virus-induced tumors are clonal or oligoclonal, and changes in the growth and oncogenic potential of in vitro transformants occur during the derivation of the cell lines. Both of these features suggest that v-Abl expression must be complemented by changes in expression of one or more cellular genes for cells to acquire a fully malignant phenotype. Such genes could include other oncogenes or tumor suppressor genes. Among the latter is Tp53, a gene mutated in many spontaneous cancers. To determine if mutation of the Tp53 tumor suppressor gene plays a role in Abelson virus transformation, conformation-specific monoclonal antibodies were used to examine p53 expression in a panel of Abelson virus-transformed pre-B cells. Expression of mutant forms of p53 was detected in over 40% of the isolates. Sequence analysis revealed the presence of point mutations affecting the highly conserved central portion of the protein. These mutations interfered with the ability of p53 to activate transcription from a promoter containing p53-responsive elements and to induce apoptosis in response to DNA damage. In addition, cells expressing mutant forms of p53 induced a higher frequency of tumors with a more rapid course compared to transformants expressing wild-type p53. These data suggest that Tp53 is one important cellular gene involved in malignant transformation by Abelson virus.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献