Coronavirus genomic and subgenomic minus-strand RNAs copartition in membrane-protected replication complexes

Author:

Sethna P B1,Brian D A1

Affiliation:

1. Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA.

Abstract

The majority of porcine transmissible gastroenteritis coronavirus plus-strand RNAs (genome and subgenomic mRNAs), at the time of peak RNA synthesis (5 h postinfection), were not found in membrane-protected complexes in lysates of cells prepared by Dounce homogenization but were found to be susceptible to micrococcal nuclease (85%) or to sediment to a pellet in a cesium chloride gradient (61%). They therefore are probably free molecules in solution or components of easily dissociable complexes. By contrast, the majority of minus-strand RNAs (genome length and subgenomic mRNA length) were found to be resistant to micrococcal nuclease (69%) or to remain suspended in association with membrane-protected complexes following isopycnic sedimentation in a cesium chloride gradient (85%). Furthermore, 35% of the suspended minus strands were in a dense complex (1.20 to 1.24 g/ml) that contained an RNA plus-to-minus-strand molar ratio of approximately 8:1 and viral structural proteins S, M, and N, and 65% were in a light complex (1.15 to 1.17 g/ml) that contained nearly equimolar amounts of plus- and minus-strand RNAs and only trace amounts of proteins M and N. In no instance during fractionation were genome-length minus strands found segregated from sub-genome-length minus strands. These results indicate that all minus-strand species are components of similarly structured membrane-associated replication complexes and support the concept that all are active in the synthesis of plus-strand RNAs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3