Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A: genetic and ultrastructural analysis

Author:

Doedens J R1,Giddings T H1,Kirkegaard K1

Affiliation:

1. Department of Molecular, Cellular and Developmental Biology and Howard Hughes Medical Institute, University of Colorado, Boulder 80309, USA.

Abstract

Poliovirus protein 3A, only 87 amino acids in length, is a potent inhibitor of protein secretion in mammalian cells, blocking anterograde protein traffic from the endoplasmic reticulum (ER) to the Golgi complex. The function of viral protein 3A in blocking protein secretion is extremely sensitive to mutations near the N terminus of the protein. Deletion of the first 10 amino acids or insertion of a single amino acid between amino acids 15 and 16, a mutation that causes a cold-sensitive defect in poliovirus RNA replication, abrogates the inhibition of protein secretion although wild-type amounts of the mutant proteins are expressed. Immunofluorescence light microscopy and immunoelectron microscopy demonstrate that 3A protein, expressed in the absence of other viral proteins, colocalizes with membranes derived from the ER. The precise topology of 3A with respect to ER membranes is not known, but it is likely to be associated with the cytosolic surface of the ER. Although the glycosylation of 3A in translation extracts has been reported, we show that tunicamycin, under conditions in which glycosylation of cellular proteins is inhibited, has no effect on poliovirus growth. Therefore, glycosylation of 3A plays no functional role in the viral replicative cycle. Electron microscopy reveals that the ER dilates dramatically in the presence of 3A protein. The absence of accumulated vesicles and the swelling of the ER-derived membranes argues that ER-to-Golgi traffic is inhibited at the step of vesicle formation or budding from the ER.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference68 articles.

1. Induction of membrane proliferation by poliovirus proteins 2C and 2BC;Aldabe R.;Biochem. Biophys. Res. Commun.,1995

2. Principles of selective transport: coat complexes hold the key;Aridor M.;Trends Cell Biol.,1996

3. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1990. Current protocols in molecular biology. Greene Publishing Associates Wiley Interscience New York N.Y.

4. The organization of endoplasmic reticulum export complexes;Bannykh S. I.;J. Cell Biol.,1996

5. Poliovirus mutant that contains a cold-sensitive defect in viral RNA synthesis;Bernstein H. D.;J. Virol.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3