Analysis of the internal replication sequence indicates that there are three elements required for efficient replication of minute virus of mice minigenomes

Author:

Brunstein J1,Astell C R1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada.

Abstract

Prior analysis of minigenomes of minute virus of mice carried out by our laboratory indicated that sequences within the region of nucleotides 4489 to 4695, inboard of the 5' palindrome, are required for efficient DNA replication of the virus and are the site of specific interactions with unidentified factors present in a host cell nuclear extract (P. Tam and C. R. Astell, Virology 193:812-824, 1993; P. Tam and C. R. Astell, J. Virology 68:2840-2848, 1994). In order to examine this region in finer detail, a comprehensive library of linker-scanning mutants spanning the region was tested for the ability to support replication of minigenome constructs and for the ability to interact with host cell factors. Three short discrete sequence elements critical for replication competence were observed. Binding of host cell nuclear factors was localized to four sites, with two major complexes each appearing to have two binding sites within the region. All factor binding sites were found to be directly adjacent to or overlapping with sequence elements contributing to replication competence, and evidence suggesting a correlation between factor binding and minigenome replication is presented. A possible model is proposed for function of a viral origin within the region of the internal replication sequence which addresses the still-unresolved problem of how parvoviruses overcome the thermodynamic energy barrier involved in the rearrangement of the 5'-terminal palindrome from an extended form to a hairpin conformation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3