Phosphorylation of the hepatitis C virus NS5A protein in vitro and in vivo: properties of the NS5A-associated kinase

Author:

Reed K E1,Xu J1,Rice C M1

Affiliation:

1. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA.

Abstract

NS5A derived from a hepatitis C virus (HCV) genotype 1b isolate has previously been shown to undergo phosphorylation on serine residues (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). In this report, phosphorylation of NS5A derived from HCV isolates of the 1a and distantly related 2a genotypes is demonstrated. Phosphoamino acid analysis of NS5A from the 1a isolate indicated that phosphorylation occurs predominantly on serine, with a minor fraction of threonine residues also being phosphorylated. NS5A phosphorylation was observed in diverse cell types, including COS-1, BHK-21, HeLa, and the hepatoma cell line HuH-7. Phosphorylation of a glutathione S-transferase (GST)/HCV-H NS5A fusion protein was also demonstrated in an in vitro kinase assay. This activity seemed to be highest when the pH of the reaction was neutral or slightly alkaline and displayed a preference for Mn2+ over Mg2+, with an optimum concentration of approximately 10 mM Mn2+. Somewhat surprisingly, in vitro phosphorylation of NS5A was inhibited by the addition of > or = 0.25 mM Ca2+ to reaction buffer containing Mn2+ and/or Mg2+. Comparison of phosphopeptide maps of NS5A phosphorylated in vitro and in cultured cells showed that most of the phosphopeptides comigrated, suggesting that one or more kinases involved in NS5A phosphorylation in vivo and in vitro are the same. The effects of various kinase inhibitors on NS5A phosphorylation were consistent with a kinase activity belonging to the CMGC group of serine-threonine kinases. The development of an in vitro kinase assay for NS5A phosphorylation should facilitate identification of kinase(s) responsible for its phosphorylation and of phosphorylation sites which may influence the function of NS5A in HCV propagation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference51 articles.

1. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases;Abraham R. T.;Biol. Cell,1995

2. Agapov E. V. and C. M. Rice. Unpublished data.

3. Photosensitized inhibition of growth factor-regulated protein kinases by hypericin;Agostinis P.;Biochem. Pharmacol.,1995

4. Alberts B. D. Bray J. Lewis M. Raff K. Roberts and J. D. Watson. 1994. Molecular biology of the cell. Garland Publishing Inc. New York N.Y.

5. Epidemiology of hepatitis C in the;Alter M. J.;West. Semin. Liver Dis.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3