A mutation in integrase can compensate for mutations in the simian immunodeficiency virus att site

Author:

Du Z1,Ilyinskii P O1,Lally K1,Desrosiers R C1,Engelman A1

Affiliation:

1. New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA.

Abstract

Sequences at the left terminus of U3 in the left long terminal repeat (LTR) and at the right terminus of U5 in the right LTR are important for integration of retroviral DNA. In the infectious pathogenic molecular clone of simian immunodeficiency virus strain mac239 (SIVmac239), 10 of the 12 terminal base pairs form an imperfect inverted repeat structure (5' TGGAAGGGATTT 3' [nucleotides 1 to 12] and 3' ACGATCCCTAAA 5' [nucleotides 10279 to 10268]). Nineteen different mutant forms of SIVmac239 proviral DNA with changes at one or more of the positions in each of the 12-terminal-base-pair regions were constructed. Viral replication was severely or completely compromised with nine of these mutants. Revertants appeared 40 to 50 days after transfection in two independent experiments with mutant 7, which contained changes of AGG to TAC at positions 5 to 7 in U3 and TCC to GAA at positions 10275 to 10273 in U5. Virus produced at these times from mutant 7 transfection replicated upon reinfection with only a slight delay when compared to the wild type. Sequence analysis of the LTR and integrase regions from infected cultures revealed two predominant changes: G to A at position 10275 in U5 and Glu to Lys at position 136 in integrase. Derivatives of clone 7 in which these changes were introduced individually and together were constructed by site-specific mutagenesis. Each change individually restored replication capacity only partially. However, the combination of both mutations restored replicative capacity to that of the original revertants. These results indicate that changes in integrase can compensate for mutations in the terminal nucleotides of the SIV LTR. The results further indicate that resistance to integrase inhibitors may include both integrase and LTR mutations.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3