Role of DNA Replication Proteins in Double-Strand Break-Induced Recombination in Saccharomyces cerevisiae

Author:

Wang Xuan1,Ira Grzegorz1,Tercero José Antonio2,Holmes Allyson M.1,Diffley John F. X.2,Haber James E.1

Affiliation:

1. Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110

2. Cancer Research UK, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom

Abstract

ABSTRACT Mitotic double-strand break (DSB)-induced gene conversion involves new DNA synthesis. We have analyzed the requirement of several essential replication components, the Mcm proteins, Cdc45p, and DNA ligase I, in the DNA synthesis of Saccharomyces cerevisiae MAT switching. In an mcm7-td (temperature-inducible degron) mutant, MAT switching occurred normally when Mcm7p was degraded below the level of detection, suggesting the lack of the Mcm2-7 proteins during gene conversion. A cdc45-td mutant was also able to complete recombination. Surprisingly, even after eliminating both of the identified DNA ligases in yeast, a cdc9-1 dnl4 Δ strain was able to complete DSB repair. Previous studies of asynchronous cultures carrying temperature-sensitive alleles of PCNA, DNA polymerase α (Polα), or primase showed that these mutations inhibited MAT switching (A. M. Holmes and J. E. Haber, Cell 96:415-424, 1999). We have reevaluated the roles of these proteins in G 2 -arrested cells. Whereas PCNA was still essential for MAT switching, neither Polα nor primase was required. These results suggest that arresting cells in S phase using ts alleles of Polα-primase, prior to inducing the DSB, sequesters some other component that is required for repair. We conclude that DNA synthesis during gene conversion is different from S-phase replication, involving only leading-strand polymerization.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3