Changes in the regulatory form of Rhodospirillum rubrum nitrogenase as influenced by nutritional and environmental factors

Author:

Yoch D C,Cantu M

Abstract

The photosynthetic bacterium Rhodospirillum rubrum regulates the activity of its nitrogenase (N2ase) by interconverting the enzyme into three distinct enzymatic species: N2ase A (a fully active form) and two regulatory forms, N2ase Ractive and N2ase Rinactive. N2ase R is distinguished from N2ase A in vitro by the requirement of its Fe protein for activation by a Mn2+-dependent activating factor. N2ase is converted from the A to the R form in response to certain environmental factors such as carbon starvation, depletion of intracellular adenosine triphosphate, or the addition of NH4+ (or glutamate) to a culture of N-starved cells. The rapid inhibition of R. rubrum N2ase in vivo by NH4+ was shown to result from the conversion of N2ase A to N2ase Rinactive. On depletion of NH4+ from the culture, whole-cell N2ase activity returned; however, the enzyme remained in the R form. Unlike the effect of NH4+, adding glutamate to cells containing N2ase A did not inhibit in vivo activity, but converted the enzyme to the R form (N2ase Ractive). Although glutamate-induced N2ase R formation was much slower than the NH4+-induced reaction, it occurred in the presence of rifampin, indicating that de novo protein synthesis was not involved. This suggested that N2ase R was formed by a modification of N2ase A. Although glutamine synthetase in involved in the conversion of N2ase A to R, the adenylylation state of glutamine synthetase appears not to be involved in regulating this nitrogenase reaction.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference26 articles.

1. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes;Bender R. A.;J. Bacteriol.,1977

2. Two forms of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum;Carithers R. P.;J. Bacteriol.,1979

3. Adenylate energy charge in Escherichia coli during growth and starvation;Chapman A. G.;J. Bacteriol.,1971

4. Interference by oxygen in the acetylene-reduction test for aerobic nitrogen fixing baoteria;Drozd J.;J. Gen. Microbiol.,1970

5. Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum;Gest H.;J. Biol. Chem.,1950

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3