Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200

Author:

DiChristina T J1

Affiliation:

1. Woods Hole Oceanographic Institution, Massachusetts 02543.

Abstract

The inhibitory effects of nitrate (NO3-) and nitrite (NO2-) on dissimilatory iron (FE3+) reduction were examined in a series of electron acceptor competition experiments using Shewanella putrefaciens 200 as a model iron-reducing microorganism. S. putrefaciens 200 was found to express low-rate nitrate reductase, nitrite reductase, and ferrireductase activity after growth under highly aerobic conditions and greatly elevated rates of each reductase activity after growth under microaerobic conditions. The effects of NO3- and NO2- on the Fe3+ reduction activity of both aerobically and microaerobically grown cells appeared to follow a consistent pattern; in the presence of Fe3+ and either NO3- or NO2-, dissimilatory Fe3+ and nitrogen oxide reduction occurred simultaneously. Nitrogen oxide reduction was not affected by the presence of Fe3+, suggesting that S. putrefaciens 200 expressed a set of at least three physiologically distinct terminal reductases that served as electron donors to NO3-, NO2-, and Fe3+. However, Fe3+ reduction was partially inhibited by the presence of either NO3- or NO2-. An in situ ferrozine assay was used to distinguish the biological and chemical components of the observed inhibitory effects. Rate data indicated that neither NO3- nor NO2- acted as a chemical oxidant of bacterially produced Fe2+. In addition, the decrease in Fe3+ reduction activity observed in the presence of both NO3- and NO2- was identical to the decrease observed in the presence of NO2- alone. These results suggest that bacterially produced NO2- is responsible for inhibiting electron transport to Fe3+.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3