Identification of a Saccharomyces cerevisiae Glucosidase That Hydrolyzes Flavonoid Glucosides

Author:

Schmidt Sabine1,Rainieri Sandra2,Witte Simone1,Matern Ulrich1,Martens Stefan1

Affiliation:

1. Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstr. 17A, 35037 Marburg/Lahn, Germany

2. AZTI-Tecnalia/Food Research Division, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160 Derio, Spain

Abstract

ABSTRACT Baker's yeast ( Saccharomyces cerevisiae ) whole-cell bioconversions of naringenin 7- O -β-glucoside revealed considerable β-glucosidase activity, which impairs any strategy to generate or modify flavonoid glucosides in yeast transformants. Up to 10 putative glycoside hydrolases annotated in the S. cerevisiae genome database were overexpressed with His tags in yeast cells. Examination of these recombinant, partially purified polypeptides for hydrolytic activity with synthetic chromogenic α- or β-glucosides identified three efficient β-glucosidases (EXG1, SPR1, and YIR007W), which were further assayed with natural flavonoid β-glucoside substrates and product verification by thin-layer chromatography (TLC) or high-performance liquid chromatography (HPLC). Preferential hydrolysis of 7- or 4′- O -glucosides of isoflavones, flavonols, flavones, and flavanones was observed in vitro with all three glucosidases, while anthocyanins were also accepted as substrates. The glucosidase activities of EXG1 and SPR1 were completely abolished by Val168Tyr mutation, which confirmed the relevance of this residue, as reported for other glucosidases. Most importantly, biotransformation experiments with knockout yeast strains revealed that only EXG1 knockout strains lost the capability to hydrolyze flavonoid glucosides.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3