Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli

Author:

VanBogelen R A,Kelley P M,Neidhardt F C

Abstract

Heat and various inhibitory chemicals were tested in Escherichia coli for the ability to cause accumulation of adenylylated nucleotides and to induce proteins of the heat shock (htpR-controlled), the oxidation stress (oxyR-controlled), and the SOS (lexA-controlled) regulons. Under the conditions used, heat and ethanol initiated solely a heat shock response, hydrogen peroxide and 6-amino-7-chloro-5,8-dioxoquinoline (ACDQ) induced primarily an oxidation stress response and secondarily an SOS response, nalidixic acid and puromycin induced primarily an SOS and secondarily a heat shock response, isoleucine restriction induced a poor heat shock response, and CdCl2 strongly induced all three stress responses. ACDQ, CdCl2, and H2O2 each stimulated the synthesis of approximately 35 proteins by factors of 5- to 50-fold, and the heat shock, oxidation stress, and SOS regulons constituted a minor fraction of the overall cellular response. The pattern of accumulation of adenylylated nucleotides during these treatments was inconsistent with a simple role for these nucleotides as alarmones sufficient for triggering the heat shock response, but was consistent with a role in the oxyR-mediated response.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3