Affiliation:
1. Wageningen Centre for Food Sciences
2. NIZO Food Research, Ede, The Netherlands
3. Laboratoire de Bactériologie des Ecosystemes, Institut Pasteur de Lille, Lille, France
Abstract
ABSTRACT
Lactobacillus plantarum
is a flexible and versatile microorganism that inhabits a variety of environmental niches, including the human gastrointestinal (GI) tract. Moreover, this lactic acid bacterium can survive passage through the human or mouse stomach in an active form. To investigate the genetic background of this persistence, resolvase-based in vivo expression technology (R-IVET) was performed in
L. plantarum
WCFS1 by using the mouse GI tract as a model system. This approach identified 72
L. plantarum
genes whose expression was induced during passage through the GI tract as compared to laboratory media. Nine of these genes encode sugar-related functions, including ribose, cellobiose, sucrose, and sorbitol transporter genes. Another nine genes encode functions involved in acquisition and synthesis of amino acids, nucleotides, cofactors, and vitamins, indicating their limited availability in the GI tract. Four genes involved in stress-related functions were identified, reflecting the harsh conditions that
L. plantarum
encounters in the GI tract. The four extracellular protein encoding genes identified could potentially be involved in interaction with host specific factors. The rest of the genes are part of several functionally unrelated pathways or encode (conserved) hypothetical proteins. Remarkably, a large number of the functions or pathways identified here have previously been identified in pathogens as being important in vivo during infection, strongly suggesting that survival rather than virulence is the explanation for the importance of these genes during host residence.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
205 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献