The Paralogous Pairs of Genes Involved in Clavulanic Acid and Clavam Metabolite Biosynthesis Are Differently Regulated in Streptomyces clavuligerus

Author:

Tahlan Kapil1,Anders Cecilia1,Jensen Susan E.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Abstract

ABSTRACT Carboxyethylarginine synthase, encoded by the paralogous ceaS1 and ceaS2 genes, catalyzes the first reaction in the shared biosynthetic pathway leading to clavulanic acid and the other clavam metabolites in Streptomyces clavuligerus . The nutritional regulation of ceaS1 and ceaS2 expression was analyzed by reverse transcriptase PCR and by the use of the enhanced green fluorescent protein-encoding gene (e gfp ) as a reporter. ceaS1 was transcribed in complex soy medium only, whereas ceaS2 was transcribed in both soy and defined starch-asparagine (SA) media. The transcriptional start points of the two genes were also mapped to a C residue 98 bp upstream of ceaS1 and a G residue 51 bp upstream of the ceaS2 start codon by S1 nuclease protection and primer extension analyses. Furthermore, transcriptional mapping of the genes encoding the beta-lactam synthetase ( bls1 ) and proclavaminate amidinohydrolase ( pah1 ) isoenzymes from the paralogue gene cluster indicated that a single polycistronic transcript of ∼4.9 kb includes ceaS1 , bls1 , and pah1 . The expression of ceaS1 and ceaS2 in a mutant strain defective in the regulatory protein CcaR was also examined. ceaS1 transcription was not affected in the ccaR mutant, whereas that of ceaS2 was greatly reduced compared to the wild-type strain. Overall, our results suggest that different mechanisms are involved in regulating the expression of ceaS1 and ceaS2 , and presumably also of other paralogous genes that encode proteins involved in the early stages of clavulanic acid and clavam metabolite biosynthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3