Genetic Evidence Identifying the True Gluconeogenic Fructose-1,6-Bisphosphatase in Thermococcus kodakaraensis and Other Hyperthermophiles

Author:

Sato Takaaki1,Imanaka Hiroyuki1,Rashid Naeem1,Fukui Toshiaki1,Atomi Haruyuki1,Imanaka Tadayuki1

Affiliation:

1. Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan

Abstract

ABSTRACT Fructose-1,6-bisphosphatase (FBPase) is one of the key enzymes in gluconeogenesis. Although FBPase activity has been detected in several hyperthermophiles, no orthologs corresponding to the classical FBPases from bacteria and eukaryotes have been identified in their genomes. An inositol monophosphatase (IMPase) from Methanococcus jannaschii which displayed both FBPase and IMPase activities and a structurally novel FBPase (Fbp Tk ) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 have been proposed as the “missing” FBPase. For this study, using T. kodakaraensis , we took a genetic approach to elucidate which candidate is the major gluconeogenic enzyme in vivo. The IMPase/FBPase ortholog in T. kodakaraensis , Imp Tk , was confirmed to possess high FBPase activity along with IMPase activity, as in the case of other orthologs. We therefore constructed Δ fbp and Δ imp strains by applying a gene disruption system recently developed for T. kodakaraensis and investigated their phenotypes. The Δ fbp strain could not grow under gluconeogenic conditions while glycolytic growth was unimpaired, and the disruption resulted in the complete abolishment of intracellular FBPase activity. Evidently, fbp Tk is an indispensable gene for gluconeogenesis and is responsible for almost all intracellular FBPase activity. In contrast, the endogenous imp Tk gene could not complement the defect of the fbp deletion, and its disruption did not lead to any detectable phenotypic changes under the conditions examined. These facts indicated that imp Tk is irrelevant to gluconeogenesis, despite the high FBPase activity of its protein product, probably due to insufficient transcription. Our results provide strong evidence that the true FBPase for gluconeogenesis in T. kodakaraensis is the Fbp Tk ortholog, not the IMPase/FBPase ortholog.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3