Mutational Analysis of Xanthomonas Harpin HpaG Identifies a Key Functional Region That Elicits the Hypersensitive Response in Nonhost Plants

Author:

Kim Jung-Gun1,Jeon Eunkyung1,Oh Jonghee1,Moon Jae Sun2,Hwang Ingyu1

Affiliation:

1. School of Agricultural Biotechnology, Seoul National University, Seoul

2. Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea

Abstract

ABSTRACT HpaG is a type III-secreted elicitor protein of Xanthomonas axonopodis pv. glycines. We have determined the critical amino acid residues important for hypersensitive response (HR) elicitation by random and site-directed mutagenesis of HpaG and its homolog XopA. A plasmid clone carrying hpaG was mutagenized by site-directed mutagenesis, hydroxylamine mutagenesis, and error-prone PCR. A total of 52 mutants were obtained, including 51 single missense mutants and 1 double missense mutant. The HR elicitation activity was abolished in the two missense mutants [HpaG(L50P) and HpaG(L43P/L50P)]. Seven single missense mutants showed reduced activity, and the HR elicitation activity of the rest of the mutants was similar to that of wild-type HpaG. Mutational and deletion analyses narrowed the region essential for elicitor activity to the 23-amino-acid peptide (H 2 N-NQGISEKQLDQLLTQLIMALLQQ-COOH). A synthetic peptide of this sequence possessed HR elicitor activity at the same concentration as the HpaG protein. This region has 78 and 74% homology with 23- and 27-amino-acid regions of the HrpW harpin domains, respectively, from Pseudomonas and Erwinia spp. The secondary structure of the peptide is predicted to be an α-helix, as is the HrpW region that is homologous to HpaG. The predicted α-helix of HpaG is probably critical for the elicitation of the HR in tobacco plants. In addition, mutagenesis of a xopA gene yielded two gain-of-function mutants: XopA(F48L) and XopA(F48L/M52L). These results indicate that the 12 amino acid residues between L39 and L50 of HpaG have critical roles in HR elicitation in tobacco plants.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3