CovS Inactivates CovR and Is Required for Growth under Conditions of General Stress in Streptococcus pyogenes

Author:

Dalton Tracy L.1,Scott June R.1

Affiliation:

1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322

Abstract

ABSTRACT The gram-positive human pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes diseases ranging from mild and often self-limiting infections of the skin or throat to invasive and life-threatening illnesses. To cause such diverse types of disease, the GAS must be able to sense adverse environments and regulate its gene expression accordingly. The CovR/S two-component signal transduction regulatory system in GAS represses about 15% of the GAS genome, including many genes involved in virulence, in response to the environment. We report that CovR is still able to repress transcription from several promoters in the absence of the putative histidine kinase sensor for this system, CovS. We also show that a phosphorylation site mutant (D53A) of CovR is unable to repress gene expression. In addition, we report that a strain with a nonpolar mutation in CovS does not grow at a low pH, elevated temperature, or high osmolarity. The stress-related phenotypes of the CovS mutant were complemented by expression of covS from a plasmid. Selection for growth of a CovS mutant under stress conditions resulted in isolation of second-site mutations that inactivated covR , indicating that CovR and CovS act in the same pathway. Also, at 40°C in the wild-type strain, CovR appeared to be less active on the promoter tested, which is consistent with the hypothesis that it was partially inactivated by CovS. We suggest that under mild stress conditions, CovS inactivates CovR, either directly or indirectly, and that this inactivation relieves repression of many GAS genes, including the genes needed for growth of GAS under stress conditions and some genes that are necessary for virulence. Growth of many gram-positive bacteria under multiple-stress conditions requires alteration of promoter recognition produced by RNA polymerase association with the general stress response sigma factor, σ B . We provide evidence that for GAS, which lacks a sigB ortholog, growth under stress conditions requires the CovR/S two-component regulatory system instead. This two-component system in GAS thus appears to perform a function for which other gram-positive bacteria utilize an alternative sigma factor.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3