Affiliation:
1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
Abstract
ABSTRACT
The gram-positive human pathogen
Streptococcus pyogenes
(group A streptococcus [GAS]) causes diseases ranging from mild and often self-limiting infections of the skin or throat to invasive and life-threatening illnesses. To cause such diverse types of disease, the GAS must be able to sense adverse environments and regulate its gene expression accordingly. The CovR/S two-component signal transduction regulatory system in GAS represses about 15% of the GAS genome, including many genes involved in virulence, in response to the environment. We report that CovR is still able to repress transcription from several promoters in the absence of the putative histidine kinase sensor for this system, CovS. We also show that a phosphorylation site mutant (D53A) of CovR is unable to repress gene expression. In addition, we report that a strain with a nonpolar mutation in CovS does not grow at a low pH, elevated temperature, or high osmolarity. The stress-related phenotypes of the CovS mutant were complemented by expression of
covS
from a plasmid. Selection for growth of a CovS mutant under stress conditions resulted in isolation of second-site mutations that inactivated
covR
, indicating that CovR and CovS act in the same pathway. Also, at 40°C in the wild-type strain, CovR appeared to be less active on the promoter tested, which is consistent with the hypothesis that it was partially inactivated by CovS. We suggest that under mild stress conditions, CovS inactivates CovR, either directly or indirectly, and that this inactivation relieves repression of many GAS genes, including the genes needed for growth of GAS under stress conditions and some genes that are necessary for virulence. Growth of many gram-positive bacteria under multiple-stress conditions requires alteration of promoter recognition produced by RNA polymerase association with the general stress response sigma factor, σ
B
. We provide evidence that for GAS, which lacks a
sigB
ortholog, growth under stress conditions requires the CovR/S two-component regulatory system instead. This two-component system in GAS thus appears to perform a function for which other gram-positive bacteria utilize an alternative sigma factor.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
131 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献