Identification of Siderophore Biosynthesis Genes Essential for Growth of Aeromonas salmonicida under Iron Limitation Conditions

Author:

Najimi Mohsen1,Lemos Manuel L.1,Osorio Carlos R.1

Affiliation:

1. Department of Microbiology and Parasitology, Institute of Aquaculture and Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain

Abstract

ABSTRACT Aeromonas salmonicida subsp. salmonicida , the etiological agent of furunculosis in fish, produces a catechol-type siderophore under iron-limiting conditions. In this study, the Fur titration assay (FURTA) was used to identify a cluster of six genes, asbG, asbF, asbD, asbC, asbB , and asbI , encoding proteins similar to components of the siderophore biosynthetic machinery in other bacteria. Reverse transcriptase PCR analyses showed that this cluster consists of four iron-regulated transcriptional units. Mutants with deletions in either asbD (encoding a multidomain nonribosomal peptide synthetase), asbG (encoding a histidine decarboxylase), or asbC (encoding a predicted histamine monooxygenase) did not grow under iron-limiting conditions and did not produce siderophores. Growth of the Δ asbG strain under iron starvation conditions was restored by addition of histamine, suggesting that the siderophore in this species could contain a histamine-derived moiety. None of the mutants could grow in the presence of transferrin, indicating that A. salmonicida uses the catechol-type siderophore for removal of iron from transferrin rather than relying on a receptor for this iron-binding protein. All 18 A. salmonicida strains analyzed by DNA probe hybridization were positive in tests for the presence of the asbD gene, and all of them promoted the growth of asbD, asbG , and asbC mutants, suggesting that this siderophore-mediated iron uptake system is conserved among A. salmonicida isolates. This study provides the first description of siderophore biosynthesis genes in this fish pathogen, and the results demonstrate that the asbD, asbG , and asbC genes are necessary for the production of a catecholate siderophore that is essential for the growth of A. salmonicida under iron limitation conditions.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3