β-1,2 Oligomannose Adhesin Epitopes Are Widely Distributed over the Different Families of Candida albicans Cell Wall Mannoproteins and Are Associated through both N- and O-Glycosylation Processes

Author:

Fradin Chantal1,Slomianny Marie Christine2,Mille Céline1,Masset Annick1,Robert Raymond3,Sendid Boualem1,Ernst Joachim F.4,Michalski Jean Claude2,Poulain Daniel1

Affiliation:

1. UMR Inserm 799, Laboratoire de Mycologie Fondamentale et Appliquée, Universitéde Lille 2, 59045 Lille cedex, France

2. Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, 59655 Villeneuve d'Ascq, France

3. Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, 16 bd Daviers, 49000 Angers, France

4. Institut für Mikrobiologie, Heinrich-Heine-Universität, Universitätsstrasse, 1/26.12, D-40225 Düsseldorf, Germany

Abstract

ABSTRACT β-1,2-Linked mannosides (β-Mans) are believed to contribute to Candida albicans virulence. The presence of β-Mans has been chemically established for two molecules (phosphopeptidomannan [PPM] and phospholipomannan) that are noncovalently linked to the cell wall, where they correspond to specific epitopes. However, a large number of cell wall mannoproteins (CWMPs) also express β-Man epitopes, although their nature and mode of β-mannosylation are unknown. We therefore used Western blotting to map β-Man epitopes for the different families of mannoproteins gradually released from the cell wall according to their mode of anchorage (soluble, released by dithiothreitol, β-1,3 glucan linked, and β-1,6 glucan linked). Reduction of β-Man epitope expression occurred after chemical and enzymatic deglycosylation of the different cell wall fractions, as well as in a secreted form of Hwp1, a representative of the CWMPs linked by glycosylphosphatidylinositol remnants. Enzyme-linked immunosorbent assay inhibition tests were performed to assess the presence of β-Man epitopes in released oligomannosides. A comparison of the results obtained with CWMPs to the results obtained with PPM and the use of mutants with mutations affecting O and N glycosylation demonstrated that both O glycosylation and N glycosylation participate in the association of β-Mans with the protein moieties of CWMPs. This process, which can alter the function of cell wall molecules and their recognition by the host, is therefore more important and more complex than originally thought, since it differs from the model established previously with PPM.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3