The Two-Component System ChtRS Contributes to Chlorhexidine Tolerance in Enterococcus faecium

Author:

Guzmán Prieto Ana M.1,Wijngaarden Jessica1,Braat Johanna C.1,Rogers Malbert R. C.1,Majoor Eline1,Brouwer Ellen C.1,Zhang Xinglin1,Bayjanov Jumamurat R.1,Bonten Marc J. M.1,Willems Rob J. L.1,van Schaik Willem1

Affiliation:

1. Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands

Abstract

ABSTRACT Enterococcus faecium is one of the primary causes of nosocomial infections. Disinfectants are commonly used to prevent infections with multidrug-resistant E. faecium in hospitals. Worryingly, E. faecium strains that exhibit tolerance to disinfectants have already been described. We aimed to identify and characterize E. faecium genes that contribute to tolerance to the disinfectant chlorhexidine (CHX). We used a transposon mutant library, constructed in a multidrug-resistant E. faecium bloodstream isolate, to perform a genome-wide screen to identify genetic determinants involved in tolerance to CHX. We identified a putative two-component system (2CS), composed of a putative sensor histidine kinase (ChtS) and a cognate DNA-binding response regulator (ChtR), which contributed to CHX tolerance in E. faecium . Targeted chtR and chtS deletion mutants exhibited compromised growth in the presence of CHX. Growth of the chtR and chtS mutants was also affected in the presence of the antibiotic bacitracin. The CHX- and bacitracin-tolerant phenotype of E. faecium E1162 was linked to a unique, nonsynonymous single nucleotide polymorphism in chtR . Transmission electron microscopy showed that upon challenge with CHX, the Δ chtR and Δ chtS mutants failed to divide properly and formed long chains. Normal growth and cell morphology were restored when the mutations were complemented in trans . Morphological abnormalities were also observed upon exposure of the Δ chtR and Δ chtS mutants to bacitracin. The tolerance to both chlorhexidine and bacitracin provided by ChtRS in E. faecium highlights the overlap between responses to disinfectants and antibiotics and the potential for the development of cross-tolerance for these classes of antimicrobials.

Funder

European Commission

ZonMw

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3