Preferential Accessibility of the Yeast his3 Promoter Is Determined by a General Property of the DNA Sequence, Not by Specific Elements

Author:

Mai Xuhong1,Chou Susanna1,Struhl Kevin1

Affiliation:

1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT Yeast promoter regions are often more accessible to nuclear proteins than are nonpromoter regions. As assayed by Hin fI endonuclease cleavage in living yeast cells, Hin fI sites located in the promoters of all seven genes tested were 5- to 20-fold more accessible than sites in adjacent nonpromoter regions. Hin fI hypersensitivity within the his3 promoter region is locally determined, since it was observed when this region was translocated to the middle of the ade2 structural gene. Detailed analysis of the his3 promoter indicated that preferential accessibility is not determined by specific elements such as the Gcn4 binding site, poly(dA-dT) sequences, TATA elements, or initiator elements or by transcriptional activity. However, progressive deletion of the promoter region in either direction resulted in a progressive loss of Hin fI accessibility. Preferential accessibility is independent of the Swi-Snf chromatin remodeling complex, Gcn5 histone acetylase complexes Ada and SAGA, and Rad6, which ubiquitinates histone H2B. These results suggest that preferential accessibility of the his3 (and presumably other) promoter regions is determined by a general property of the DNA sequence (e.g., base composition or a related feature) rather than by defined sequence elements. The organization of the compact yeast genome into inherently distinct promoter and nonpromoter regions may ensure that transcription factors bind preferentially to appropriate sites in promoters rather than to the excess of irrelevant but equally high-affinity sites in nonpromoter regions.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3