Slap Negatively Regulates Src Mitogenic Function but Does Not Revert Src-Induced Cell Morphology Changes

Author:

Manes Gaël1,Bello Paul1,Roche Serge1

Affiliation:

1. Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique UPR-1086, 34293 Montpellier, France

Abstract

ABSTRACT Src-like adapter protein (Slap) is a recently identified protein that negatively regulates mitogenesis in murine fibroblasts (S. Roche, G. Alonso, A. Kazlausakas, V. M. Dixit, S. A. Courtneidge, and A. Pandey, Curr. Biol. 8:975–978, 1998) and comprises an SH3 and SH2 domain with striking identity to the corresponding Src domains. In light of this, we sought to investigate whether Slap could be an antagonist of all Src functions. Like Src, Slap was found to be myristylated in vivo and largely colocalized with Src when coexpressed in Cos7 cells. Microinjection of a Slap-expressing construct into quiescent NIH 3T3 cells inhibited platelet-derived growth factor (PDGF)-induced DNA synthesis, and the inhibition was rescued by the transcription factor c-Myc but not by c-Jun/c-Fos expression. Fyn (or Src) overexpression overrides the G 1 /S block induced by both SrcK− and a Slap mutant with a deletion of its C terminus (SlapΔC), but not the block induced by Slap or SlapΔSH3, implying that the C terminus is a noncompetitive inhibitor of Src mitogenic function. Furthermore, a chimeric adapter comprising SrcΔK fused to the Slap C terminus (Src/SlapC) also inhibited Src function during the PDGF response in a noncompetitive manner, as Src coexpression could not rescue PDGF signaling. Slap, however, did not reverse deregulated Src-induced cell transformation, as it was unable to inhibit depolymerization of actin stress fibers while still being able to inhibit SrcY527F-induced DNA synthesis. This was attributed to a distinct Slap SH3 binding specificity, since the chimeric Slap/SrcSH3 molecule, in which the Slap SH3 was replaced by the Src SH3 sequence, substantially restored stress fiber formation. Indeed, three amino acids important for ligand binding in Src SH3 were replaced in the Slap SH3 sequence; Slap SH3 did not bind to the Src SH3 partners p85α, Shc, and Sam68 in vitro, and the chimeric tyrosine kinase Slap/SrcK, composed of SlapΔC fused to the SH2 linker kinase sequence of Src, was not regulated in vivo. Furthermore, the Src SH3 domain is required for signaling during mitogenesis and since Slap/SrcK behaved as a dominant negative in the PDGF mitogenic response when microinjected into quiescent fibroblasts. We conclude that Slap is a negative regulator of Src during mitogenesis involving both the SH2 and the C terminus domains in a noncompetitive manner, but it does not regulate all Src function due to specific SH3 binding substrates.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3