Identifying a Core RNA Polymerase Surface Critical for Interactions with a Sigma-Like Specificity Factor

Author:

Cliften Paul F.1,Jang Sei-Heon2,Jaehning Judith A.1

Affiliation:

1. Department of Biochemistry and Molecular Genetics and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, 1 and

2. Department of Molecular Biology, Taegu University, Taegu, Korea2

Abstract

ABSTRACT Cyclic interactions occurring between a core RNA polymerase (RNAP) and its initiation factors are critical for transcription initiation, but little is known about subunit interaction. In this work we have identified regions of the single-subunit yeast mitochondrial RNAP (Rpo41p) important for interaction with its sigma-like specificity factor (Mtf1p). Previously we found that the whole folded structure of both polypeptides as well as specific amino acids in at least three regions of Mtf1p are required for interaction. In this work we started with an interaction-defective point mutant in Mtf1p (V135A) and used a two-hybrid selection to isolate suppressing mutations in the core polymerase. We identified suppressors in three separate regions of the RNAP which, when modeled on the structure of the closely related phage T7 RNAP, appear to lie on one surface of the protein. Additional point mutations and biochemical assays were used to confirm the importance of each region for Rpo41p-Mtf1p interactions. Remarkably, two of the three suppressors are found in regions required by T7 RNAP for DNA sequence recognition and promoter melting. Although these essential regions of the phage RNAP are poorly conserved with the mitochondrial RNAPs, they are conserved among the mitochondrial enzymes. The organellar RNAPs appear to use this surface in an alternative way for interactions with their separate sigma-like specificity factor, which, like its bacterial counterpart, provides promoter recognition and DNA melting functions to the holoenzyme.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3