Genome-Wide Screening of Retroviral Envelope Genes in the Nine-Banded Armadillo (Dasypus novemcinctus, Xenarthra) Reveals an Unfixed Chimeric Endogenous Betaretrovirus Using the ASCT2 Receptor

Author:

Malicorne Sébastien1,Vernochet Cécile1,Cornelis Guillaume12,Mulot Baptiste3,Delsuc Frédéric4,Heidmann Odile1,Heidmann Thierry1,Dupressoir Anne1

Affiliation:

1. Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Unité Mixte de Recherche 9196, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, and Université Paris-Sud, Orsay, France

2. Université Paris Diderot, Sorbonne Paris Cité, Paris, France

3. ZooParc de Beauval and Beauval Nature, Saint Aignan, France

4. Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France

Abstract

ABSTRACT Retroviruses enter host cells through the interaction of their envelope (Env) protein with a cell surface receptor, which triggers the fusion of viral and cellular membranes. The sodium-dependent neutral amino acid transporter ASCT2 is the common receptor of the large RD114 retrovirus interference group, whose members display frequent env recombination events. Germ line retrovirus infections have led to numerous inherited endogenous retroviruses (ERVs) in vertebrate genomes, which provide useful insights into the coevolutionary history of retroviruses and their hosts. Rare ERV-derived genes display conserved viral functions, as illustrated by the fusogenic syncytin env genes involved in placentation. Here, we searched for functional env genes in the nine-banded armadillo ( Dasypus novemcinctus ) genome and identified dasy-env1.1 , which clusters with RD114 interference group env genes and with two syncytin genes sharing ASCT2 receptor usage. Using ex vivo pseudotyping and cell-cell fusion assays, we demonstrated that the Dasy-Env1.1 protein is fusogenic and can use both human and armadillo ASCT2s as receptors. This gammaretroviral env gene belongs to a provirus with betaretrovirus-like features, suggesting acquisition through recombination. Provirus insertion was found in several Dasypus species, where it has not reached fixation, whereas related family members integrated before diversification of the genus Dasypus >12 million years ago (Mya). This newly described ERV lineage is potentially useful as a population genetic marker. Our results extend the usage of ASCT2 as a retrovirus receptor to the mammalian clade Xenarthra and suggest that the acquisition of an ASCT2-interacting env gene is a major selective force driving the emergence of numerous chimeric viruses in vertebrates. IMPORTANCE Retroviral infection is initiated by the binding of the viral envelope glycoprotein to a host cell receptor(s), triggering membrane fusion. Ancient germ line infections have generated numerous endogenous retroviruses (ERVs) in nearly all vertebrate genomes. Here, we report a previously uncharacterized ERV lineage from the genome of a xenarthran species, the nine-banded armadillo ( Dasypus novemcinctus ). It entered the Dasypus genus >12 Mya, with one element being inserted more recently in some Dasypus species, where it could serve as a useful marker for population genetics. This element exhibits an env gene, acquired by recombination events, with conserved viral fusogenic properties through binding to ASCT2, a receptor used by a wide range of recombinant retroviruses infecting other vertebrate orders. This specifies the ASCT2 transporter as a successful receptor for ERV endogenization and suggests that ASCT2-binding env acquisition events have favored the emergence of numerous chimeric viruses in a wide range of species.

Funder

Agence Nationale de la Recherche

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3