Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism

Author:

Porco A1,Peekhaus N1,Bausch C1,Tong S1,Isturiz T1,Conway T1

Affiliation:

1. School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA.

Abstract

The Escherichia coli gntT gene was subcloned from the Kohara library, and its expression was characterized. The cloned gntT gene genetically complemented mutant E. coli strains with defects in gluconate transport and directed the formation of a high-affinity gluconate transporter with a measured apparent Km of 6 microM for gluconate. Primer extension analysis indicated two transcriptional start sites for gntT, which are separated by 66 bp and which give rise to what appears on a Northern blot to be a single, gluconate-inducible, 1.42-kb gntT transcript. Thus, it was concluded that gntT is monocistronic and is regulated by two promoters. Both of the promoters have - 10 and -35 sequence elements typical of sigma70 promoters and catabolite gene activator protein binding sites in appropriate locations to exert glucose catabolite repression. In addition, two putative gnt operator sites were identified in the gntT regulatory region. A search revealed the presence of nearly identical palindromic sequences in the regulatory regions of all known gluconate-inducible genes, and these seven putative gnt operators were used to derive a consensus gnt operator sequence. A gntT::lacZ operon fusion was constructed and used to examine gntT expression. The results indicated that gntT is maximally induced by 500 microM gluconate, modestly induced by very low levels of gluconate (4 microM), and partially catabolite repressed by glucose. The results also showed a pronounced peak of gntT expression very early in the logarithmic phase, a pattern of expression similar to that of the Fis protein. Thus, it is concluded that GntT is important for growth on low concentrations of gluconate, for entry into the logarithmic phase, and for cometabolism of gluconate and glucose.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference44 articles.

1. Genes involved in the uptake and catabolism of gluconate by Escherichia coli;Bächi B.;J. Gen. Microbiol.,1975

2. Growth rate-dependent regulation of 6-phosphogluconate dehydrogenase level in Escherichia coli K-12: ~-galactosidase expression in gnd-lac operon fusion strains;Baker H. V.;J. Bacteriol.,1983

3. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli;Ball C. A.;J. Bacteriol.,1992

4. Berlyn M. K. B. K. B. Low and K. E. Rudd. 1996. Linkage map of Escherichia coli K-12 edition 9 p. 1715-1902. In F. C. Neidhardt R. Curtiss III J. L. Ingraham E. C. C. Lin K. B. Low B. Magasanik W. S. Reznikoff M. Riley M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella: cellular and molecular biology 2nd ed. American Society for Microbiology Washington D.C.

5. Choy H. and S. Adhya. 1996. Negative control p. 1287-1299. In F. C. Neidhardt R. Curtiss III J. L. Ingraham E. C. C. Lin K. B. Low B. Magasanik W. S. Reznikoff M. Riley M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella: cellular and molecular biology 2nd ed. American Society for Microbiology Washington D.C.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3