A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene

Author:

Lee P T1,Hsu A Y1,Ha H T1,Clarke C F1

Affiliation:

1. Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles 90095-1569, USA.

Abstract

Strains of Escherichia coli with mutations in the ubiE gene are not able to catalyze the carbon methylation reaction in the biosynthesis of ubiquinone (coenzyme Q) and menaquinone (vitamin K2), essential isoprenoid quinone components of the respiratory electron transport chain. This gene has been mapped to 86 min on the chromosome, a region where the nucleic acid sequence has recently been determined. To identify the ubiE gene, we evaluated the amino acid sequences encoded by open reading frames located in this region for the presence of sequence motifs common to a wide variety of S-adenosyl-L-methionine-dependent methyltransferases. One open reading frame in this region (o251) was found to encode these motifs, and several lines of evidence that confirm the identity of the o251 product as UbiE are presented. The transformation of a strain harboring the ubiE401 mutation with o251 on an expression plasmid restored both the growth of this strain on succinate and its ability to synthesize both ubiquinone and menaquinone. Disruption of o251 in a wild-type parental strain produced a mutant with defects in growth on succinate and in both ubiquinone and menaquinone synthesis. DNA sequence analysis of the ubiE401 allele identified a missense mutation resulting in the amino acid substitution of Asp for Gly142. E. coli strains containing either the disruption or the point mutation in ubiE accumulated 2-octaprenyl-6-methoxy-1,4-benzoquinone and demethylmenaquinone as predominant intermediates. A search of the gene databases identified ubiE homologs in Saccharomyces cerevisiae, Caenorhabditis elegans, Leishmania donovani, Lactococcus lactis, and Bacillus subtilis. In B. subtilis the ubiE homolog is likely to be required for menaquinone biosynthesis and is located within the gerC gene cluster, known to be involved in spore germination and normal vegetative growth. The data presented identify the E. coli UbiE polypeptide and provide evidence that it is required for the C methylation reactions in both ubiquinone and menaquinone biosynthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference46 articles.

1. The identification of Escherichia coli ispB (cel) gene encoding the octaprenyl diphosphate synthase;Asai K.;Biochem. Biophys. Res. Commun.,1994

2. Bairoch A. 1993. Unpublished observations. GenBank accession number P31114.

3. Barkovich R. J. A. Shtanko J. A. Shepherd P. T. Lee A. Tzagoloff D. C. Myles and C. F. Clarke. Characterization of the COQ5 gene from Saccharomyces cerevisiae: evidence for a C-methyltransferase in ubiquinone biosynthesis. J. Biol. Chem. in press.

4. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure;Chen A.;Protein Sci.,1994

5. Ubiquinone biosynthesis in Saccharomyces cerevisiae: isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene;Clarke C. F.;J. Biol. Chem.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3