Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans

Author:

De Arpan1,Liao Sumei2,Bitoun Jacob P.2,Roth Randy2,Beatty Wandy L.3,Wu Hui4,Wen Zezhang T.125

Affiliation:

1. Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA

2. Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA

3. Washington University Department of Molecular Microbiology, St. Louis, Missouri, USA

4. Department of Pediatric Dentistry, University of Alabama School of Dentistry, Birmingham, Alabama, USA

5. Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA

Abstract

ABSTRACTStreptococcus mutansis known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen.S. mutansstrains deficient inrgpG, encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. ThergpGdeficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, thergpGmutant existed primarily in chains of swollen, “squarish” dividing cells. Deficiency ofrgpGalso causes significant reduction in biofilm formation (P< 0.01). Double and triple mutants with deficiency inbrpAand/orpsr, genes coding for the LytR-CpsA-Psr family proteins BrpA and Psr, which were previously shown to play important roles in cell envelope biogenesis, were constructed using thergpGmutant. There were no major differences in growth rates between the wild-type strain and thergpG brpAandrgpG psrdouble mutants, but the growth rate of thergpG brpA psrtriple mutant was reduced drastically (P< 0.001). Under transmission electron microscopy, both double mutants resembled thergpGmutant, while the triple mutant existed as giant cells with multiple asymmetric septa. When analyzed by immunoblotting, thergpGmutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and thebrpAandpsrsingle mutants. These results suggest that RgpG inS. mutansplays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope.IMPORTANCEStreptococcus mutans, a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation byS. mutans, indicative of a significant role of RGP in cell division and biofilm formation inS. mutans. These results are novel not only inS. mutans, but also other streptococci that produce RGP. This study also shows that the LytR-CpsA-Psr family proteins BrpA and Psr inS. mutansare involved in attachment of RGP and probably other cell wall glycopolymers to the peptidoglycan. In addition, the results also suggest that BrpA and Psr may play a direct role in cell division and biofilm formation inS. mutans. This study reveals new potential targets to develop anticaries therapeutics.

Funder

NIH/NIDCR

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3