Identification of B-cell epitopes on the S4 subunit of pertussis toxin

Author:

Ibsen P H1,Holm A1,Petersen J W1,Olsen C E1,Heron I1

Affiliation:

1. Bacterial Vaccine Department, Statens Seruminstitut, Copenhagen, Denmark.

Abstract

The main purpose of the present study was to identify B-cell epitopes on the S4 subunit of pertussis toxin (PT) by the synthetic peptide approach. Two strategies were followed: (i) screening of two series of overlapping peptides (12- and 25-residue peptides) covering the entire S4 sequence by a panel of murine monoclonal anti-PT antibodies and various polyclonal anti-PT antisera in an enzyme-linked immunosorbent assay (ELISA), and (ii) analysis of the S4 amino acid sequence by a predictive algorithm followed by synthesis and immunization of mice with the predicted peptides coupled to diphtheria toxoid. The anti-peptide conjugate antisera were tested in an ELISA for cross-reactivity with native PT, B oligomer, and S4. Screening of the free peptides in an ELISA by the PT antisera indicated the presence of six B-cell epitope-containing domains covered by residues 18 to 32, 33 to 46, 39 to 52, 51 to 65, 71 to 84, and 91 to 106. None of the peptides, however, were recognized by the monoclonal anti-PT antibodies in an ELISA. Immunization with six computer-predicted peptides (B1 to B6) and three potential T-cell epitopes (T1 to T3) gave rise to very high antibody responses towards the homologous conjugates. With the exception of the anti-T1/diphtheria toxoid antisera, all anti-peptide conjugate antisera cross-reacted with PT in an ELISA at different levels. None of these anti-peptide conjugate antisera, however, showed any PT-neutralizing effect as measured by the Chinese hamster ovary cell assay and the leukocytosis-promoting activity test. The results of the present study suggest that discontinuous epitopes are predominant in the S4 subunit of native PT.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3