Initial Characterization of a Spontaneous Interferon Secreted During Growth and Differentiation of Friend Erythroleukemia Cells

Author:

Revel Miriam Friedman-Einat Michel,Kimchi Adi

Abstract

A gradual increase in the level of 2′,5′-oligoadenylate synthetase takes place in Friend erythroleukemia cells after a shiftdown in the rate of cell growth. The increase is about 5-fold after entry of cells into the stationary phase of growth, but much higher (25-fold) when reduction in growth accompanies cell differentiation. In the latter case, the enzyme increase is similar to that which can be induced in these cells by exogenous interferon (IFN). The increase in 2′,5′-oligoadenylate synthetase was shown to be due to a spontaneous secretion of IFN by the cells themselves: it is completely abolished if antiserum to murine type I IFN is added to the culture medium. In attempts to isolate some of this spontaneously secreted IFN, we show that it is stable at pH 2, not neutralized by antiserum to type II IFN, and that it also differs from the known IFN species induced by Sendai virus in Friend cells. The major component of this spontaneously secreted IFN is 20,000Mrand differs from the corresponding virus-induced 20,000-MrIFN by its lower affinity for antiserum to type I IFN and its antigenic characterization as β-murine IFN. The major component of the spontaneous IFN also exhibits a higher ratio of antigrowth to antiviral activity than the Sendai-induced IFNs. We suggest that Friend cells produce this specific type of IFN for the regulation of their growth and differentiation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3