The Bovine Herpesvirus 1 Immediate-Early Protein (bICP0) Associates with Histone Deacetylase 1 To Activate Transcription

Author:

Zhang Yange1,Jones Clinton1

Affiliation:

1. Department of Veterinary and Biomedical Sciences, Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68503

Abstract

ABSTRACT Infected-cell protein 0 encoded by bovine herpesvirus 1 (BHV-1) (bICP0) is necessary for efficient productive infection, in large part, because it activates all 3 classes of BHV-1 genes (U. V. Wirth, C. Fraefel, B. Vogt, C. Vlcek, V. Paces, and M. Schwyzer, J. Virol. 66:2763–2772, 1992). Although bICP0 is believed to be a functional homologue of herpes simplex virus type 1-encoded ICP0, the only well-conserved domain between the proteins is a zinc ring finger located near the amino terminus of both proteins. Our previous studies demonstrated that bICP0 is toxic to transfected cells but does not appear to directly induce apoptosis (Inman, M., Y. Zhang, V. Geiser, and C. Jones, J. Gen. Virol. 82:483–492, 2001). C-terminal sequences in the last 320 amino acids of bICP0 mediate subcellular localization. Mutagenesis of the zinc ring finger within bICP0 revealed that this domain was important for transcriptional activation. In this study, we demonstrate that bICP0 interacts with histone deacetylase 1 (HDAC1), which results in activation of a simple promoter containing four consensus Myc-Max binding sites. The interaction between bICP0 and HDAC1 correlated with inhibition of Mad-dependent transcriptional repression. In resting CV-1 cells, bICP0 relieved HDAC1-mediated transcriptional repression. The zinc ring finger was required for relieving HDAC1-induced repression but not for interacting with HDAC1. In fetal bovine lung cells but not in a human epithelial cell line, bICP0 expression correlated with reduced steady-state levels of HDAC1 in crude cytoplasmic extracts. We hypothesize that the ability of bICP0 to overcome HDAC1-induced repression plays a role in promoting productive infection in highly differentiated cell types.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3