Herpes Simplex Virus DNA Cleavage and Packaging Proteins Associate with the Procapsid prior to Its Maturation

Author:

Sheaffer Amy K.1,Newcomb William W.2,Gao Min1,Yu Dong3,Weller Sandra K.3,Brown Jay C.2,Tenney Daniel J.1

Affiliation:

1. Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 064921;

2. Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 229082; and

3. Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 060303

Abstract

ABSTRACT Packaging of DNA into preformed capsids is a fundamental early event in the assembly of herpes simplex virus type 1 (HSV-1) virions. Replicated viral DNA genomes, in the form of complex branched concatemers, and unstable spherical precursor capsids termed procapsids are thought to be the substrates for the DNA-packaging reaction. In addition, seven viral proteins are required for packaging, although their individual functions are undefined. By analogy to well-characterized bacteriophage systems, the association of these proteins with various forms of capsids, including procapsids, might be expected to clarify their roles in the packaging process. While the HSV-1 UL6, UL15, UL25, and UL28 packaging proteins are known to associate with different forms of stable capsids, their association with procapsids has not been tested. Therefore, we isolated HSV-1 procapsids from infected cells and used Western blotting to identify the packaging proteins present. Procapsids contained UL15 and UL28 proteins; the levels of both proteins are diminished in more mature DNA-containing C-capsids. In contrast, UL6 protein levels were approximately the same in procapsids, B-capsids, and C-capsids. The amount of UL25 protein was reduced in procapsids relative to that in more mature B-capsids. Moreover, C-capsids contained the highest level of UL25 protein, 15-fold higher than that in procapsids. Our results support current hypotheses on HSV DNA packaging: (i) transient association of UL15 and UL28 proteins with maturing capsids is consistent with their proposed involvement in site-specific cleavage of the viral DNA (terminase activity); (ii) the UL6 protein may be an integral component of the capsid shell; and (iii) the UL25 protein may associate with capsids after scaffold loss and DNA packaging, sealing the DNA within capsids.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3