Use of an Exotic Carbon Source To Selectively Increase Metabolic Activity and Growth of Pseudomonas putida in Soil

Author:

Colbert Stephen F.1,Isakeit Thomas1,Ferri Mario1,Weinhold Albert R.1,Hendson Mavis1,Schroth Milton N.1

Affiliation:

1. Department of Plant Pathology, University of California at Berkeley, Berkeley, California 94720

Abstract

Respiration and growth of Pseudomonas putida PpG7, containing catabolic plasmid NAH7, was determined in three agricultural field soils amended with the carbon source salicylate. The addition of salicylate to soil significantly increased the population of PpG7. However, there was a lack of relationship between microbial numbers and activity as determined by evolution of CO 2 . In soils containing 30 to 1,500 μg of salicylate per g, metabolic activities of PpG7 peaked between 18 and 42 h and population densities increased approximately 10 1 -to 10 5 -fold. However, the metabolic activity of PpG7 rapidly declined after salicylate was utilized, whereas peak population densities were maintained for the duration of the experiments (5 to 7 days). Thus, elevated population densities of PpG7 were represented by inactive cells. Soil type had only minor effects on respiration rates or growth curves of PpG7 when amended with comparable concentrations of salicylate. Respiration and growth rates were optimal at concentrations between 300 and 1,000 μg of salicylate per g in the test soils. At 1,500 to 2,500 μg/g, respiration and growth of PpG7 were initially suppressed, but after a short lag time both attained levels similar to or greater than those resulting from the use of lower concentrations of salicylate. The culturing of PpG7 on a salicylate-amended medium to induce salicylate-degradative enzymes did not affect the lag time before utilization of salicylate in soil. Although PpG7 competed well with fungi for the substrate, suppression of fungal populations with cycloheximide resulted in significantly increased population densities of PpG7 in two of three soils amended with salicylate. The beneficial activities of bacteria in soil are discussed in relation to population density, population metabolic activity, and selective carbon source utilization.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3