Affiliation:
1. Unité 314, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Regional Maison Blanche, Reims, France.
Abstract
We investigated the implication of asialo GM1 as an epithelial receptor in the increased Pseudomonas aeruginosa affinity for regenerating respiratory epithelial cells from cystic fibrosis (CF) and non-CF patients. Human respiratory epithelial cells were obtained from nasal polyps of non-CF subjects and of CF patients homozygous for the delta F 508 transmembrane conductance regulator protein (CFTR) mutation and cultured according to the explant-outgrowth model. At the periphery of the outgrowth, regenerating respiratory epithelial cells spreading over the collagen I matrix with lamellipodia were observed, characteristic of respiratory epithelial wound repair after injury. P aeruginosa adherence to regenerating respiratory epithelial cells was found to be significantly greater in the delta F 508 homozygous CF group than in the non-CF group (P < 0.001). In vitro competitive binding inhibition assays performed with rabbit polyclonal antibody against asialo GM1 demonstrated that blocking asialo GM1 reduces P. aeruginosa adherence to regenerating respiratory epithelial cells in delta F 508 homozygous cultures (P < 0.001) as well as in non-CF cultures (P < 0.001). Blocking of asialo GM1 was significantly more efficient in CF patients than in non-CF subjects (P < 0.05). Distribution of asialo GM1 as determined by preembedding labelling and immunoelectron microscopy clearly demonstrated the specific apical membrane expression of asialo GM1 by regenerating respiratory epithelial cells, whereas other cell phenotypes did not apically express asialo GM1. These results demonstrate that (i) asialo GM1 is an apical membrane receptor for P. aeruginosa expressed at the surface of CF and non-CF regenerating respiratory epithelial cells and (ii) asialo GM1 is specifically recovered in regenerating respiratory epithelium. These results suggest that in CF, epithelial repair represents the major event which exposes asialo GM1 for P. aeruginosa adherence.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献