Regulation of cytokine production during the expression phase of the anticryptococcal delayed-type hypersensitivity response

Author:

Buchanan K L1,Murphy J W1

Affiliation:

1. Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73190.

Abstract

Effects of both positive and negative regulatory T cells on cellular infiltration and cytokine production during the expression phase of the anticryptococcal immune response were examined. Tamp cells, which are induced by cryptococcal antigen, significantly amplify the anticryptococcal delayed-type hypersensitivity response, whereas a cascade of T suppressor (Ts) cells inhibits the response and decreases the clearance of Cryptococcus neoformans during an infection. By using the gelatin sponge implantation model, we found that Tamp cells do not stimulate a significant increase in cellular infiltration into the sponges in response to cryptococcal antigen compared with that into delayed-type hypersensitivity-reactive sponges in immune control mice. However, Tamp cells do stimulate significant increases in the production of gamma interferon and interleukin-2 (IL-2) in the antigen-injected sponges over the level of the representative cytokine in antigen-injected sponges from the immune control mice. Likewise, Ts1 cells, induced with cryptococcal antigen, do not significantly affect antigen-induced cellular infiltration into sponges in immune mice. In contrast, decreased levels of gamma interferon and IL-2 are observed in antigen-injected sponges from Ts1-cell-recipient, immunized mice compared with those of the positive immune controls. The presence of either Tamp or Ts1 cells in immunized mice stimulates increased production of IL-5 but not IL-4 over that of the positive immune controls.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3