Affiliation:
1. Centre for Applied Microbiology & Research, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
Abstract
ABSTRACT
Clostridial neurotoxins potently and specifically inhibit neurotransmitter release in defined cell types by a mechanism that involves cleavage of specific components of the vesicle docking/fusion complex, the SNARE complex. A derivative of the type A neurotoxin from
Clostridium botulinum
(termed LH
N
/A) that retains catalytic activity can be prepared by proteolysis. The LH
N
/A, however, lacks the putative native binding domain (H
C
) of the neurotoxin and is thus unable to bind to neurons and effect inhibition of neurotransmitter release. Here we report the chemical conjugation of LH
N
/A to an alternative cell-binding ligand, wheat germ agglutinin (WGA). When applied to a variety of cell lines, including those that are ordinarily resistant to the effects of neurotoxin, WGA-LH
N
/A conjugate potently inhibits secretory responses in those cells. Inhibition of release is demonstrated to be ligand mediated and dose dependent and to occur via a mechanism involving endopeptidase-dependent cleavage of the natural botulinum neurotoxin type A substrate. These data confirm that the function of the H
C
domain of
C. botulinum
neurotoxin type A is limited to binding to cell surface moieties. The data also demonstrate that the endopeptidase and translocation functions of the neurotoxin are effective in a range of cell types, including those of nonneuronal origin. These observations lead to the conclusion that a clostridial endopeptidase conjugate that can be used to investigate SNARE-mediated processes in a variety of cells has been successfully generated.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献