Author:
Case M E,Hautala J A,Giles N H
Abstract
Genetic and complementation mapping studies using 20 qa-2 mutants defective for catabolic dehydroquinase indicate that the qa-2 gene encodes a single polypeptide chain and is the structural gene for catabolic dehydroquinase, a 220,000-molecular-weight protein composed of identical 10,000-molecular-weight subunits. Many qa-2 mutants are capable of reversion, but no evidence has yet been obtained for nonsense mutations in this gene. The biochemical consequences of the mutations in two complementing qa-2 strains (M239 and M204) have been determined. Both mutants have extremely low levels of catalytic activity and form a heterocaryon with about 4% of the wild-type activity. As assayed by immunological cross-reactivity, mutant M239 and the heterocaryon have nearly wild-type levels of native-molecular-weight catabolic dehydroquinase protein, whereas M204 has no detectable amount of this protein. Thus it is concluded that M239 has a mutation at or near the catalytic site which reduces the activity 10,000-fold but has little or no influence on the formation of the native multimeric structure. In contrast, M204 apparently has a mutation that severely inhibits aggregation and may have only a minor effect on the inherent potential for catalytic conversion at the reactive site. The heterocaryon would appear to form a mixed multimer with the monomeric subunits from M239 providing the aggregated structure and those from M204, the catalytically active moiety.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献