Differential Effects of yfgL Mutation on Escherichia coli Outer Membrane Proteins and Lipopolysaccharide

Author:

Charlson Emily S.1,Werner John N.2,Misra Rajeev1

Affiliation:

1. Faculty of Cellular and Molecular Biosciences, School of Life Sciences, Arizona State University, Tempe, Arizona

2. Department of Molecular Biology, Princeton University, Princeton, New Jersey

Abstract

ABSTRACT YfgL together with NlpB, YfiO, and YaeT form a protein complex to facilitate the insertion of proteins into the outer membrane of Escherichia coli . Without YfgL, the levels of OmpA, OmpF, and LamB are significantly reduced, while OmpC levels are slightly reduced. In contrast, the level of TolC significantly increases in a yfgL mutant. When cells are depleted of YaeT or YfiO, levels of all outer membrane proteins examined, including OmpC and TolC, are severely reduced. Thus, while the assembly pathways of various nonlipoprotein outer membrane proteins may vary through the step involving YfgL, all assembly pathways in Escherichia coli converge at the step involving the YaeT/YfiO complex. The negative effect of yfgL mutation on outer membrane proteins may in part be due to elevated sigma E activity, which has been shown to downregulate the synthesis of various outer membrane proteins while upregulating the synthesis of periplasmic chaperones, foldases, and lipopolysaccharide. The data presented here suggest that the yfgL effect on outer membrane proteins also stems from a defective assembly apparatus, leading to aberrant outer membrane protein assembly, except for TolC, which assembles independent of YfgL. Consistent with this view, the simultaneous absence of YfgL and the major periplasmic protease DegP confers a synthetic lethal phenotype, presumably due to the toxic accumulation of unfolded outer membrane proteins. The results support the hypothesis that TolC and major outer membrane proteins compete for the YaeT/YfiO complex, since mutations that adversely affect synthesis or assembly of major outer membrane proteins lead to elevated TolC levels.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3