Adhesive Properties of a Symbiotic Bacterium from a Wood-Boring Marine Shipworm

Author:

Imam Syed H.1,Greene Richard V.1,Griffin Harold L.1

Affiliation:

1. Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604

Abstract

Adhesive properties of a cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm by Waterbury et al. (J. B. Waterbury, C. B. Calloway, and R. D. Turner, Science 221:1401-1403, 1983) are described. 35 S-labeled cells of the shipworm bacterium bound preferentially to Whatman no. 1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide- p -trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene glycol-bis(β-aminoethyl ether)- N,N,N′N′ -tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the shipworm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentrations (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference32 articles.

1. Rumen bacterial interrelationships with plant tissue during degradation revealed by transmission electron microscopy;Akin D. E.;Appl. Environ. Microbiol.,1974

2. Demonstration of the involvement of adsorbed proteins in cell adhesion and cell growth;Baier R. E.;Adv. Chem. Ser.,1975

3. Mannose residues on phagocytes as receptors for attachment of E. coli and Salmonella typhi;Bar-Shavit Z.;Biochem. Biophys. Res. Commun.,1977

4. Rumen bacteria: interaction with particulate dietary components and response to dietary variations;Cheng K.;Fed. Proc.,1977

5. An acidic polysaccharide produced by film forming bacterium;Corp;Dev. Ind. Microbiol.,1970

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3